INS - FORMAT-13

CIE (written Test -I) Format (2nd Year)

Institution Name: K. S. POLYTECHNIC

Name of the Program: CIVIL ENGINEERING

Institution Code: 465 Academic year: 2022-23

Course Name	Engineering . Mechanics. & Strength of materials	CIE (written Test) Duration	I 80 min	Sem- III		Date 9/11/22
Course Code	20CE31P			Marks- 30		
	Note: Answer one full questi	on from each section.		I		
Section	Assessment Ques	tions	CL	СО	PO	Marks
I	1. a) Define: Elasticity, Ductility, Plasticity					
	b) Define: Stress, Strain, Hook's law		L1	1	1,2,4,	3+3=6
	OR				7	
	2. a) Define: Force, Resultant of force, Young's modulus					
	b) Define: volumetric strain, Brittle, Hardness					
II	3. Name the types of the force system in each of following					
	cases					
	a) Rope being pulled on the opposite side by the two people					
	b) Force acting on the moving bus			1	1,2,4,	1+1+1=3
	c) Weight of train acting on track when track is not in a straight				7	
	line					
		OR				
	d) Reaction acting on legs of chair, placed on floor					
	e) Force on a rod resting against a wall					
	f) The benches in the class room (whole class)					
	4. Draw the diagram for the given forces to find out the magnitude					
	and direction					
	20N towards east,	40N acting at 30° to north of east,				
	94N towards south,	57N acting south west				
	382 N acting to north of west	50N at 50° at west of north	1.2	1	1.2.4	2.2.6
	OR		L2	1	1,2,4,	3+3=0
	30N towards south	600N in the north west				
	800N towards east	400N at 40 east of north				
	1000N at 30° south of west	750N Towards north				

Signature of Paper Setter

Scrutinized by HOD

Approved by IQAC Chairmen

sig. of principal with seal.

SCHEME OF VALUATION SOM 1ST INTERNAL

1 a) Elasticity:

Elasticity: According to dictionary **elasticity** is the ability of an object or material to resume its normal shape after being stretched or compressed

Ductility:

The **ductility is a property of a material** which enables it to be drawn out into a thin wire.

Mild steel, copper, aluminium are the good examples of a ductile material.

Plasticity:

The **plasticity of a material** is its ability to undergo some permanent deformation without rupture(brittle).

Plastic deformation will take place only after the elastic range has been exceeded.

b) stress: the force of resistance per unit area offered by a body against deformation is known as stress.

Stress= applied force/ cross sectional area

Strain: when the body is subjected to external force there will be change in dimension of the body.

Strain= change in dimension of body / original dimension of the body

Hook's law: it states that stress is directly proportional to strain with in the elastic limit.

Stress/strain= a constant

OR

2a) Force : It is an external agency tends to produce or destroy motion. It is a vector quantity

and its unit is N.

Resultant Forces : It is a single force which produces the same effect as that of all the given forces. According to law of moments the algebraic sum of moments due to all forces acting on a body about any point

is equal to the moment of their resultant about the same point

Conditions of Equilibrium : It states that the algebraic sum of all the external forces as well as moments

about any point in their plane is equal to zero. $\Sigma V = 0$, $\Sigma H = 0$ and $\Sigma M = 0$.

b) VOLUMETRIC STRAIN: the ratio between the change in volume to original volime

Volumetric strain = change in volume/ original volume

Brittleness:

The **brittleness of a property of a material** which enables it to withstand permanent deformation.

Cast iron, glass are examples of brittle materials.

Hardness:

The resistance of a material to force penetration or bending is **hardness**.

The hardness is the ability of a material to resist scratching, abrasion, cutting or penetration.

Each definition carry 1marks: 3+3=6

3 a) coplanar concurrent force

Coplanar force

Coplanar non concurrent force

b)

4. a)

5. a)

Solution:

Summation of horizontal and vertical forces

 $\sum_{\text{And}} F_x = 160\cos 30^0 - 200\cos 30^0 - 80\cos 60^0 + 180\cos 45^0 = 52.64N(\rightarrow)$

 $\sum F_y = 160\sin 30^0 + 200\sin 30^0 - 80\sin 60^0 - 180\sin 45^0 = -16.56N(\downarrow)$ Now resultant of the force:

$$R = \sqrt{\left(\sum F_x\right)^2 + \left(\sum F_y\right)^2} = \sqrt{(52.64)^2 + (-16.56)^2} = 55.18N$$

OR

Fig. 1.21

Summation of horizontal and vertical forces

 $\sum F_x = 10\cos 25^\circ - 25\sin 70^\circ - 20\cos 65^\circ - 15\sin 40^\circ = -32.52kN (\leftarrow)$ and

$$\sum F_{y} = 10\sin 25^{\circ} - 25\cos 70^{\circ} - 20\sin 65^{\circ} + 15\cos 40^{\circ} = -10.95kN(\downarrow)$$

Now resultant of the force:

$$R = \sqrt{\left(\sum F_x\right)^2 + \left(\sum F_y\right)^2} = \sqrt{\left(-32.52\right)^2 + \left(-10.95\right)^2} = 34.31kN$$
$$\tan \theta = \frac{\sum F_y}{\sum F_x} = \frac{10.95}{32.52} = 0.33$$
$$\theta = \tan^{-1}(0.33) = 18.26^0$$

b)

6.a)

Solution:
Given:
$$t = 10$$
mm, $b = 75$ mm, $l = 400$ mm, $E = 2 \times 10^5$ N/mm², $\delta l = 0.21$ mm
Area, $A = b \times t = 75 \times 10 = 750$ mm²
Elongation, $\delta l = \frac{PL}{AE}$
Load, $P = \frac{AE\delta l}{L} = \frac{750 \times 2 \times 10^5 \times 0.21}{400} = 78750$ N = 78.75kN

OR

b)

Given:

 $d = 20 \text{mm}, l = 500 \text{mm}, P = 45 \text{kN} = 45000\text{N}, E = 200 \text{kN} / mm^2 = 200 \times 10^3 \text{ N} / mm^2, 1/\text{m} = 0.3$ Area, $A = \frac{\pi d^2}{4} = \frac{\pi \times 20^2}{4} = 314.2 \text{mm}^2$; \therefore Stress, $\sigma = \frac{P}{A} = \frac{45000}{314.2} = 143.22 \text{ N} / mm^2$ Elastic modulus, $E = \frac{\sigma}{\epsilon}$; \therefore Linear Strain, $\epsilon = \frac{\sigma}{E} = \frac{143.22}{200 \times 10^3} = 0.71 \times 10^{-3}$ Also, Strain, $\epsilon = \frac{\delta l}{l}$; \therefore Elongation, $\delta l = \epsilon \times l = 0.71 \times 10^{-3} \times 500 = 0.355 \text{mm}$ Change in volume Volumetric strain, $\epsilon_v = \epsilon \left(1 - \frac{2}{m}\right) = 0.71 \times 10^{-3} (1 - 2 \times 0.3) = 0.28 \times 10^{-3}$ Volume, $v = A \times l = 314.2 \times 500 = 157100 \text{mm}^3$; Also, Volumetric strain, $\epsilon_v = \frac{\delta v}{v}$ \therefore Change in volume, $\delta v = \epsilon_v \times v = 0.28 \times 10^3 \times 157100 = 43.99 \text{ mm}^3$